#65
先日、もう一つのブログで「素因子の個数の分布と路線図が似ている」というアイデアについて書きました。
今回、2から500までの素因子の個数分布を表示したいと思います。使用した言語はPython3.6です。
from math import *
#素因子をリストの持つ関数
def prime_list(n):
List=[]
for i in range(2,floor(sqrt(n))+1):
while n % i == 0:
List.append(i)
n //= i
if n != 1:
List.append(n)
return List
#素因子の数だけ●を出力する
for i in range(2,500+1):
k = len(prime_list(i))
print(i,”:”,end=””)
for j in range(k):
print(“●”,end=””)
print(“\n”)
出力結果はこちらです。
例えば、18=2×3×3と3個の素数の積で書けるので、18のところには●が3つ表示されています。素数であれば、●は1個です。
2 :●
3 :●
4 :●●
5 :●
6 :●●
7 :●
8 :●●●
9 :●●
10 :●●
11 :●
12 :●●●
13 :●
14 :●●
15 :●●
16 :●●●●
17 :●
18 :●●●
19 :●
20 :●●●
21 :●●
22 :●●
23 :●
24 :●●●●
25 :●●
26 :●●
27 :●●●
28 :●●●
29 :●
30 :●●●
31 :●
32 :●●●●●
33 :●●
34 :●●
35 :●●
36 :●●●●
37 :●
38 :●●
39 :●●
40 :●●●●
41 :●
42 :●●●
43 :●
44 :●●●
45 :●●●
46 :●●
47 :●
48 :●●●●●
49 :●●
50 :●●●
51 :●●
52 :●●●
53 :●
54 :●●●●
55 :●●
56 :●●●●
57 :●●
58 :●●
59 :●
60 :●●●●
61 :●
62 :●●
63 :●●●
64 :●●●●●●
65 :●●
66 :●●●
67 :●
68 :●●●
69 :●●
70 :●●●
71 :●
72 :●●●●●
73 :●
74 :●●
75 :●●●
76 :●●●
77 :●●
78 :●●●
79 :●
80 :●●●●●
81 :●●●●
82 :●●
83 :●
84 :●●●●
85 :●●
86 :●●
87 :●●
88 :●●●●
89 :●
90 :●●●●
91 :●●
92 :●●●
93 :●●
94 :●●
95 :●●
96 :●●●●●●
97 :●
98 :●●●
99 :●●●
100 :●●●●
101 :●
102 :●●●
103 :●
104 :●●●●
105 :●●●
106 :●●
107 :●
108 :●●●●●
109 :●
110 :●●●
111 :●●
112 :●●●●●
113 :●
114 :●●●
115 :●●
116 :●●●
117 :●●●
118 :●●
119 :●●
120 :●●●●●
121 :●●
122 :●●
123 :●●
124 :●●●
125 :●●●
126 :●●●●
127 :●
128 :●●●●●●●
129 :●●
130 :●●●
131 :●
132 :●●●●
133 :●●
134 :●●
135 :●●●●
136 :●●●●
137 :●
138 :●●●
139 :●
140 :●●●●
141 :●●
142 :●●
143 :●●
144 :●●●●●●
145 :●●
146 :●●
147 :●●●
148 :●●●
149 :●
150 :●●●●
151 :●
152 :●●●●
153 :●●●
154 :●●●
155 :●●
156 :●●●●
157 :●
158 :●●
159 :●●
160 :●●●●●●
161 :●●
162 :●●●●●
163 :●
164 :●●●
165 :●●●
166 :●●
167 :●
168 :●●●●●
169 :●●
170 :●●●
171 :●●●
172 :●●●
173 :●
174 :●●●
175 :●●●
176 :●●●●●
177 :●●
178 :●●
179 :●
180 :●●●●●
181 :●
182 :●●●
183 :●●
184 :●●●●
185 :●●
186 :●●●
187 :●●
188 :●●●
189 :●●●●
190 :●●●
191 :●
192 :●●●●●●●
193 :●
194 :●●
195 :●●●
196 :●●●●
197 :●
198 :●●●●
199 :●
200 :●●●●●
201 :●●
202 :●●
203 :●●
204 :●●●●
205 :●●
206 :●●
207 :●●●
208 :●●●●●
209 :●●
210 :●●●●
211 :●
212 :●●●
213 :●●
214 :●●
215 :●●
216 :●●●●●●
217 :●●
218 :●●
219 :●●
220 :●●●●
221 :●●
222 :●●●
223 :●
224 :●●●●●●
225 :●●●●
226 :●●
227 :●
228 :●●●●
229 :●
230 :●●●
231 :●●●
232 :●●●●
233 :●
234 :●●●●
235 :●●
236 :●●●
237 :●●
238 :●●●
239 :●
240 :●●●●●●
241 :●
242 :●●●
243 :●●●●●
244 :●●●
245 :●●●
246 :●●●
247 :●●
248 :●●●●
249 :●●
250 :●●●●
251 :●
252 :●●●●●
253 :●●
254 :●●
255 :●●●
256 :●●●●●●●●
257 :●
258 :●●●
259 :●●
260 :●●●●
261 :●●●
262 :●●
263 :●
264 :●●●●●
265 :●●
266 :●●●
267 :●●
268 :●●●
269 :●
270 :●●●●●
271 :●
272 :●●●●●
273 :●●●
274 :●●
275 :●●●
276 :●●●●
277 :●
278 :●●
279 :●●●
280 :●●●●●
281 :●
282 :●●●
283 :●
284 :●●●
285 :●●●
286 :●●●
287 :●●
288 :●●●●●●●
289 :●●
290 :●●●
291 :●●
292 :●●●
293 :●
294 :●●●●
295 :●●
296 :●●●●
297 :●●●●
298 :●●
299 :●●
300 :●●●●●
301 :●●
302 :●●
303 :●●
304 :●●●●●
305 :●●
306 :●●●●
307 :●
308 :●●●●
309 :●●
310 :●●●
311 :●
312 :●●●●●
313 :●
314 :●●
315 :●●●●
316 :●●●
317 :●
318 :●●●
319 :●●
320 :●●●●●●●
321 :●●
322 :●●●
323 :●●
324 :●●●●●●
325 :●●●
326 :●●
327 :●●
328 :●●●●
329 :●●
330 :●●●●
331 :●
332 :●●●
333 :●●●
334 :●●
335 :●●
336 :●●●●●●
337 :●
338 :●●●
339 :●●
340 :●●●●
341 :●●
342 :●●●●
343 :●●●
344 :●●●●
345 :●●●
346 :●●
347 :●
348 :●●●●
349 :●
350 :●●●●
351 :●●●●
352 :●●●●●●
353 :●
354 :●●●
355 :●●
356 :●●●
357 :●●●
358 :●●
359 :●
360 :●●●●●●
361 :●●
362 :●●
363 :●●●
364 :●●●●
365 :●●
366 :●●●
367 :●
368 :●●●●●
369 :●●●
370 :●●●
371 :●●
372 :●●●●
373 :●
374 :●●●
375 :●●●●
376 :●●●●
377 :●●
378 :●●●●●
379 :●
380 :●●●●
381 :●●
382 :●●
383 :●
384 :●●●●●●●●
385 :●●●
386 :●●
387 :●●●
388 :●●●
389 :●
390 :●●●●
391 :●●
392 :●●●●●
393 :●●
394 :●●
395 :●●
396 :●●●●●
397 :●
398 :●●
399 :●●●
400 :●●●●●●
401 :●
402 :●●●
403 :●●
404 :●●●
405 :●●●●●
406 :●●●
407 :●●
408 :●●●●●
409 :●
410 :●●●
411 :●●
412 :●●●
413 :●●
414 :●●●●
415 :●●
416 :●●●●●●
417 :●●
418 :●●●
419 :●
420 :●●●●●
421 :●
422 :●●
423 :●●●
424 :●●●●
425 :●●●
426 :●●●
427 :●●
428 :●●●
429 :●●●
430 :●●●
431 :●
432 :●●●●●●●
433 :●
434 :●●●
435 :●●●
436 :●●●
437 :●●
438 :●●●
439 :●
440 :●●●●●
441 :●●●●
442 :●●●
443 :●
444 :●●●●
445 :●●
446 :●●
447 :●●
448 :●●●●●●●
449 :●
450 :●●●●●
451 :●●
452 :●●●
453 :●●
454 :●●
455 :●●●
456 :●●●●●
457 :●
458 :●●
459 :●●●●
460 :●●●●
461 :●
462 :●●●●
463 :●
464 :●●●●●
465 :●●●
466 :●●
467 :●
468 :●●●●●
469 :●●
470 :●●●
471 :●●
472 :●●●●
473 :●●
474 :●●●
475 :●●●
476 :●●●●
477 :●●●
478 :●●
479 :●
480 :●●●●●●●
481 :●●
482 :●●
483 :●●●
484 :●●●●
485 :●●
486 :●●●●●●
487 :●
488 :●●●●
489 :●●
490 :●●●●
491 :●
492 :●●●●
493 :●●
494 :●●●
495 :●●●●
496 :●●●●●
497 :●●
498 :●●●
499 :●
500 :●●●●●
●が多いところを主要駅として考えると、路線図に見えませんか?
主要駅の近くは各停しか止まらない駅が多い傾向にあります。それもこの素因子の個数分布が上手く表していると思うのです。
このアイデア、いかがでしょうか…?
意見、コメント等あればお願いします。
最後までご覧いただき、ありがとうございました。